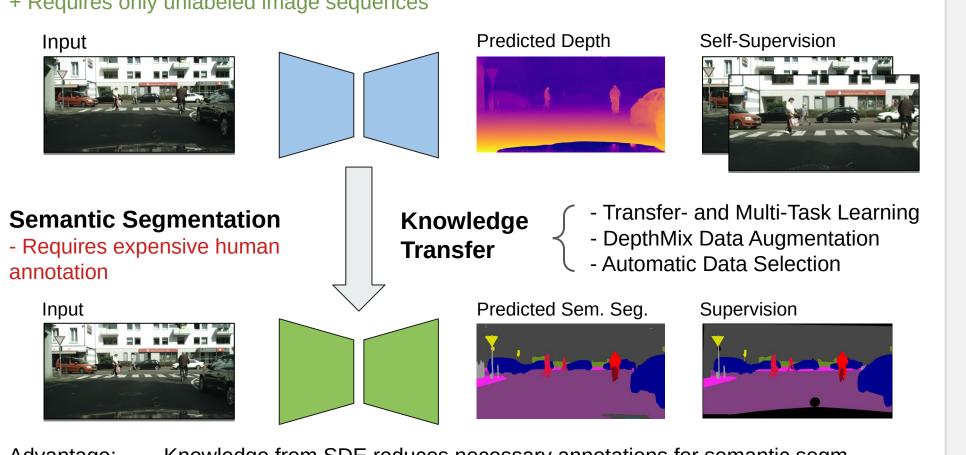
Three Ways to Improve Semantic Segmentation with Self-Supervised Depth Estimation

Lukas Hoyer¹, Dengxin Dai¹, Yuhua Chen¹, Adrian Köring², Suman Saha¹, Luc Van Gool^{1,3} ¹ ETH Zürich, Switzerland ² University of Bonn, Germany ³ KU Leuven, Belgium

Concept

Self-Supervised Depth Estimation (SDE)

+ Requires only unlabeled image sequences

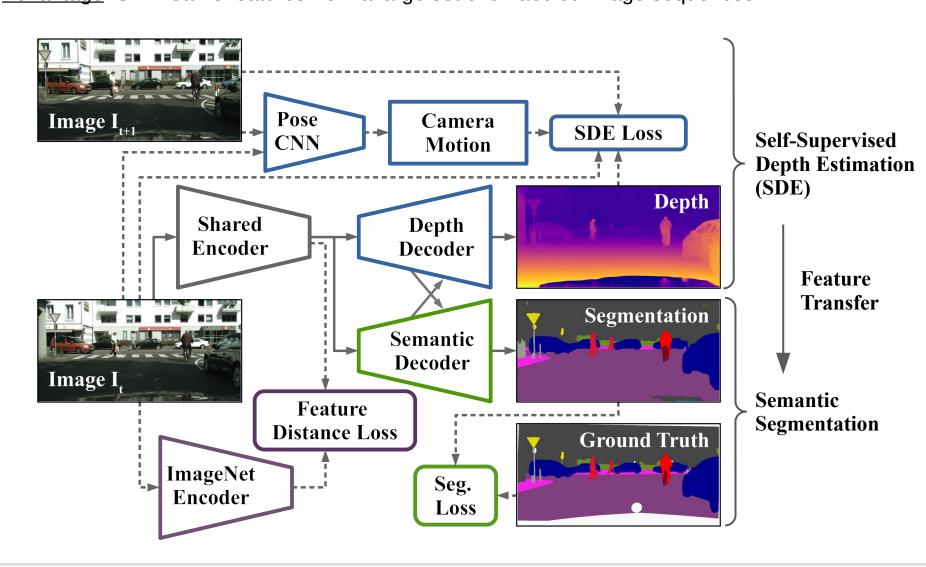


Knowledge from SDE reduces necessary annotations for semantic segm. Advantage: Implementation: https://github.com/lhoyer/improving segmentation with selfsupervised depth

Transfer and Multi-Task Learning

Motivation: Utilize depth features for semantic segmentation Approach:

- Transfer Learning: Initialize segmentation branch with depth pretraining - Multi-Task Learning: Exchange features between depth and segmentation decoder Advantage: SDE learns features from a large set of unlabeled image sequences



Concept

3

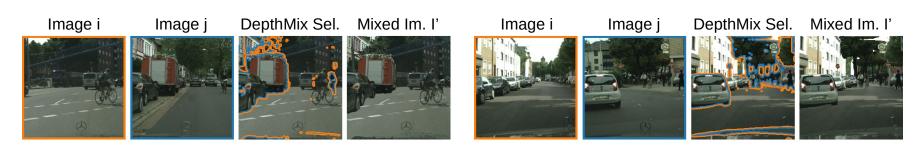
Mix Mask

$$M(a,b) = \langle$$

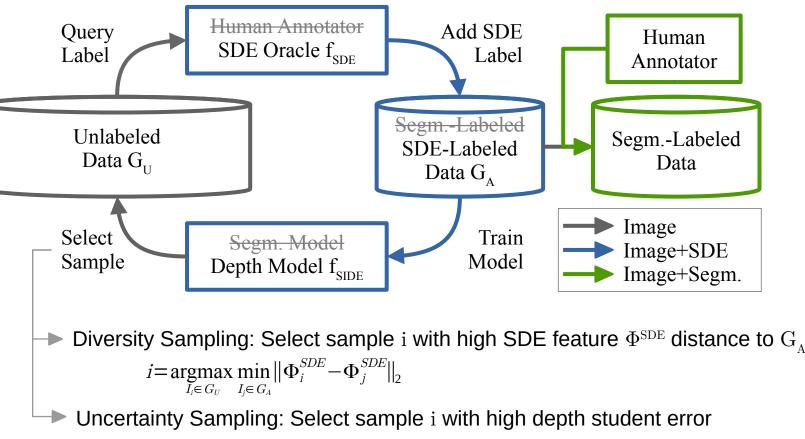
Mixed Image: Mixed Segmentation:

Real-World Examples

DepthMix produces precise mixing boundaries and effectively handles occlusions

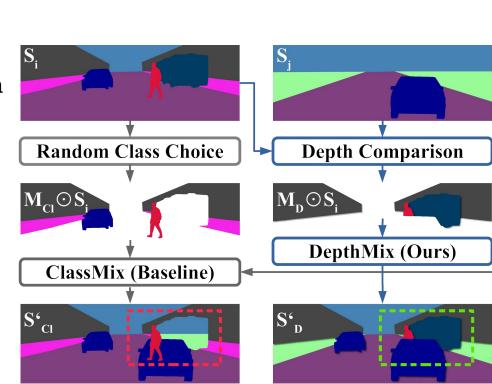


Automatic Data Selection for Annotation



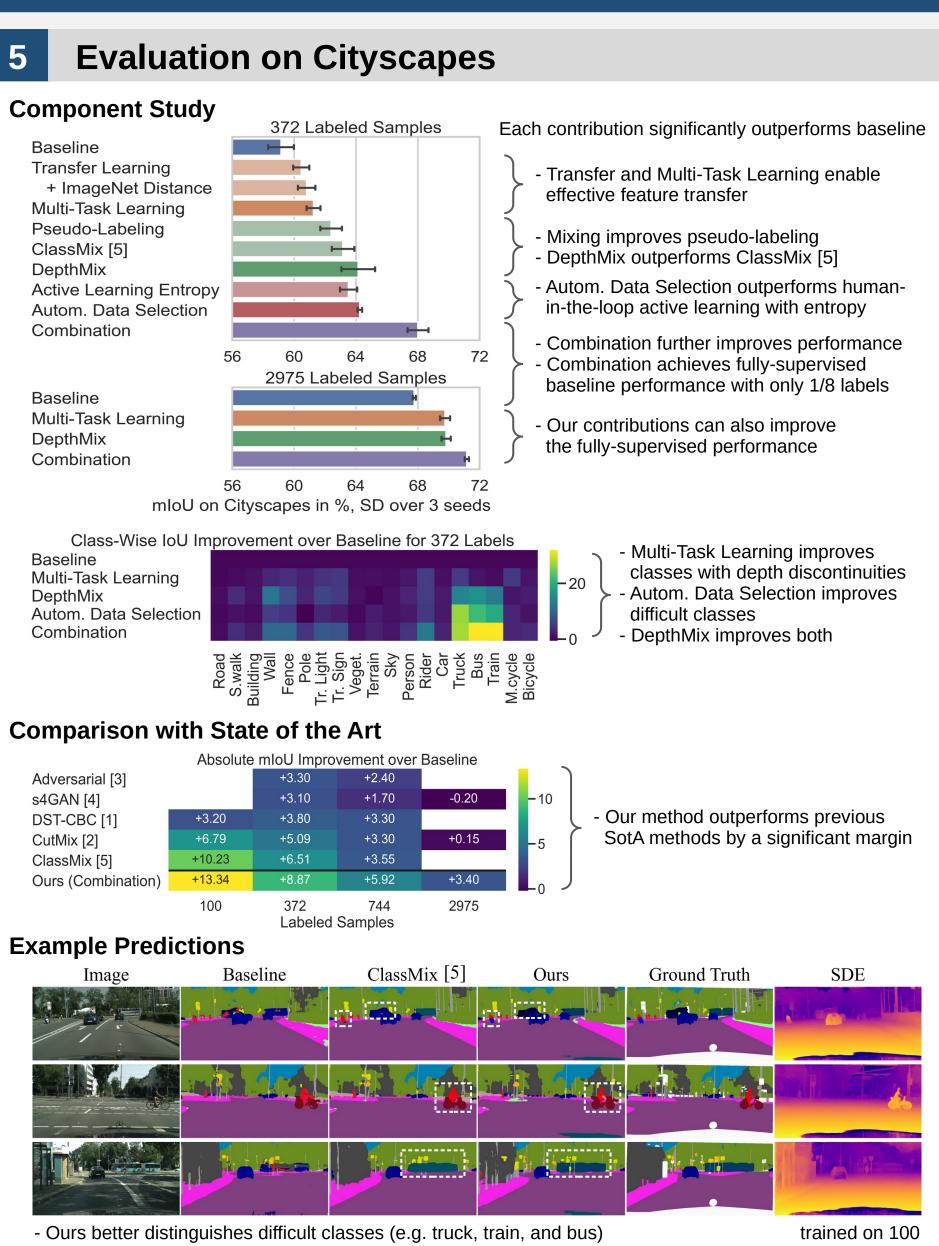
DepthMix

- Motivation: Mitigate occlusion artifacts <u>Approach</u>: Select pixels closer to camera
 - 1 if $\hat{D}_i(a,b) < \hat{D}_j(a,b) + \epsilon$ otherwise 0
- $I' = M \odot I_i + (1 M) \odot I_i$
- $S' = M \odot S_i + (1 M) \odot S_i$
- Advantage: Geometrically valid mixing



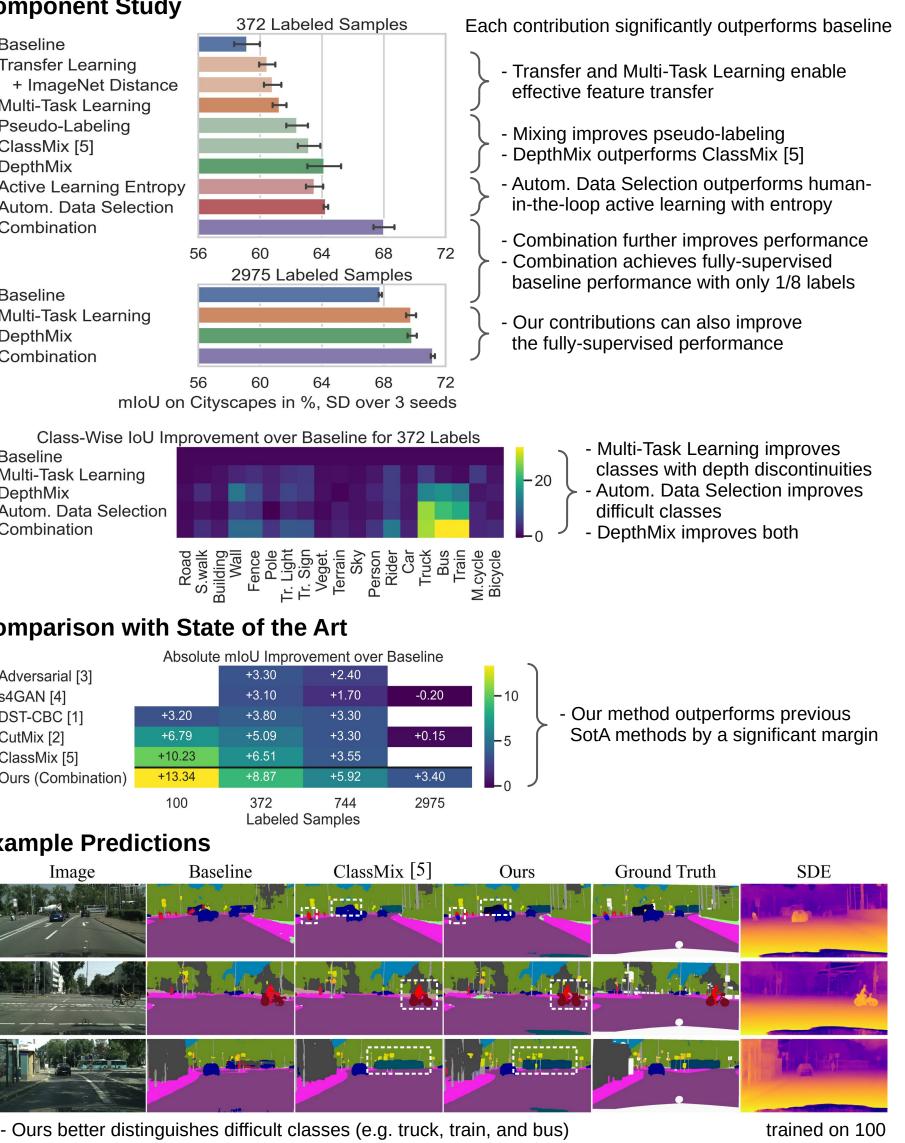
- Motivation: Select most beneficial samples to be annotated
- Approach: Iterative sample selection with SDE proxy-task oracle
- Advantage: No human in the loop \rightarrow increased flexiblity, efficiency, and scalability

$$i = \underset{I_i \in G_U}{\operatorname{argmax}} \|\log(1 + f_{SDE}(I_i)) - \log(1 + f_{SIDE}(I_i))\|_1$$



Adversarial [3]		+3.30	
s4GAN [4]		+3.10	
DST-CBC [1]	+3.20	+3.80	
CutMix [2]	+6.79	+5.09	
ClassMix [5]	+10.23	+6.51	
Ours (Combination)	+13.34	+8.87	
	100	372 Labeled	S

Example Predictions



6	References	
	et al. "Semi-supervised semantic segmentation via dynamic se nced curriculum." arXiv preprint. 2020.	
2] French MVC. 20	n et al. "Semi-supervised semantic segmentation needs strong 020.	
] Hung et al. "Adversarial learning for semi-supervised semantic segm		

ETHzürich

- Ours segments finer structures at depth discontinuities (e.g. rider, pole, and tr. sign)

labeled samples

elf-training and

, varied perturbations.

nentation." BMVC. 2019.

[4] Mittal et al. "Semi-supervised semantic segmentation with high-and low-level consistency." PAMI, 2019. [5] Olsson et al. "Classmix: Segmentation-based data augmentation for semi-

pervised learning." WACV. 2021.